

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Tait Environmental Management, Inc. 701 N. Park Center Drive

May 16, 2007

701 N. Park Center Drive Santa Ana, CA 92705 ATTN: Ms. Clara Boeru

SUBJECT: Boeing Realty Corp. Bldg C-6 Facility, Data Validation

Dear Ms. Boeru,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on May 11, 2007. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 16756:

SDG #	<u>Fraction</u>
IQC3058	Volatiles, Dissolved Metals, Wet Chemistry, Dissolved Gases

The data validation was performed under Tier 1, Tier 2 and Tier 3 guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 1999
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998

Please feel free to contact us if you have any questions.

Sincerely,

Stella S. Cuenco

Project Manager/Senior Chemist

Attachment 1

		LD	C #167	56	(Tai	it E	nvi	ron	me	nal	Ma	na	gen	ien	t, Ir	nc. /	/ Bo	peir	ng F	Rea	lty	Cor	p.,	Bld	lg C	-6	Fac	ilit	y)		- 1 - 1	3 1 4 6 2 3 1			
LDC	SDG#	DATE REC'D	(3) DATE DUE		OA 60B)	l M	iss In 10B)	Ga	ss.: ses 75)	A (31		N (35	H3 0.3)	NO	SO ₄) ₃ -N) ₂ -N	O-F (30)	PO₄ 0.0)	S (37	6.2)		OC 5.1)						•								
Matrix	:: Water/Soil		11.77	W	s	W	s	W	S	W	S	W	S	W	S	W	S	W	S	W	s	W	S	W	S	W	S	W	s	W	S	W	S	W	s
Α	IQC3058	05/11/07	06/04/07	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	Tie	er I												
В	IQC3058	05/11/07	06/04/07	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0														
С	IQC3058	05/11/07	06/04/07	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0														
																				<u> </u>	1														
	· · · · · · · · · · · · · · · · · · ·																				T														
																				†	†														
																					 	 													T
								1																											
											ļ		_														····								
	· · · · · · · · · · · · · · · · · · ·											<u> </u>								 	╁											<u> </u>			
					<u> </u>			1											 	 	 								 						H
···					 			<u> </u>			ļ								 	 	 														\vdash
				<u> </u>	<u> </u>			 						,					 -										<u> </u>			<u> </u>		_	
				ļ	 			 		<u> </u>								 														\vdash			\vdash
					<u> </u>			 																					ļ					\vdash	一
					<u> </u>					<u> </u>		<u> </u>					-		 		 	 											\vdash	\vdash	╁
				-	 							 							 	ļ												 			
					 						 											\vdash										 -	 	\vdash	╁
				-			 	\vdash			-	 										\vdash										\vdash			-
 					 		-			 	-								_		<u> </u>						_	-	 				 	\vdash	\vdash
					-		ļ	 		<u> </u>									-	 	 	\vdash										-	$\vdash \vdash$	\vdash	-
				 			-		 		-			<u> </u>						<u> </u>	 	-										\vdash	$\vdash \vdash$	\vdash	-
				 		ļ	-	-	 	 	-			 				-			 	\vdash										\vdash			
\vdash		ļ				ļ	-			-	-							-		<u> </u>	 					-		 					-		-
┝─┼											-		<u> </u>		-					<u> </u>	 	\vdash										 			-
		ļ		-	-	<u> </u>			<u> </u>	 -		_			<u> </u>			_	-			\vdash										 	igwdows	<u> </u>	
		ļ				-		-	<u> </u>	ļ	_							-		<u> </u>	 								ļ			<u> </u>	$\vdash \vdash$	<u> </u>	-
<u> </u>		<u> </u>		-	-	<u> </u>			ļ	<u> </u>	 	-									ļ											ļ		<u> </u>	
Total	B/SC	L		3	0	3	0	3	0	0	0	3	0	3	0	3	0	3	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	24

Boeing Realty Corp. Bldg. C-6 Facility Data Validation Reports LDC# 16756

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp. Bldg. C-6 Facility

Collection Date:

March 28, 2007

LDC Report Date:

May 15, 2007

Matrix:

Water

Parameters:

Volatiles

Validation Level:

Tier 1, 2, & 3

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): IQC3058

Sample Identification

IRZB0081_WG032807_0001 CMW026_WG032807_0001* IRZB0095_WG032807_0001**

^{*}Indicates sample underwent Tier 2 review

^{**}Indicates sample underwent Tier 3 review

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a Tier 3 review. Samples indicated by a single asterisk on the front cover underwent a Tier 2 review. Raw data were not evaluated for the samples reviewed by Tier 1 or 2 criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

Instrument performance data were not reviewed for Tier 1.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination (r^2) were greater than or equal to 0.990.

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
2/28/07	2-Butanone	0.037 (≥0.05)	CMW026_WG032807_0001* IRZB0095_WG032807_0001** 7D03010-BLK1	J (all detects) UJ (all non-detects)	A

Initial calibration data were not reviewed for Tier 1.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
4/3/07	Acetone 2-Butanone 2,2-Dichloropropane 2-Hexanone	109.3 70.3 29.1 63.9	CMW026_WG032807_0001* IRZB0095_WG032807_0001** 7D03010-BLK1	J (all detects) UJ (all non-detects)	А

All of the continuing calibration RRF values were within method and validation criteria.

Continuing calibration data were not reviewed for Tier 1.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
7D03010-BLK1	4/3/07	Tetrahydrofuran Trichloroethene	8.04 ug/L 0.480 ug/L	All samples in SDG IQC3058

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
IRZB0081_WG032807_0001 (4X)	Tetrahydrofuran	22 ug/L	40U ug/L
IRZB0095_WG032807_0001** (5X)	Tetrahydrofuran	27 ug/L	50U ug/L

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
7D03010-BS1	Acetone 2-Butanone 1,2-Dibromo-3-chloropropane 2-Hexanone 4-Methyl-2-pentanone 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	263 (30-140) 237 (40-140) 138 (50-135) 211 (45-140) 144 (45-140) 134 (55-130) 136 (60-130)	All samples in SDG IQC3058	J (all detects)	P

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

Internal standards data were not reviewed for Tier 1.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a Tier 3 review was performed. Raw data were not evaluated for the samples reviewed by Tier 1 or 2 criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a Tier 3 review was performed. Raw data were not evaluated for the samples reviewed by Tier 1 or 2 criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a Tier 3 review was performed. Raw data were not evaluated for the samples reviewed by Tier 1 or 2 criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp. Bldg. C-6 Facility Volatiles - Data Qualification Summary - SDG IQC3058

SDG	Sample	Compound	Flag	A or P	Reason
IQC3058	CMW026_WG032807_0001* IRZB0095_WG032807_0001**	2-Butanone	J (all detects) UJ (all non-detects)	A	Initial calibration (%RSD)
IQC3058	CMW026_WG032807_0001* IRZB0095_WG032807_0001**	Acetone 2-Butanone 2,2-Dichloropropane 2-Hexanone	J (all detects) UJ (all non-detects)	А	Continuing calibration (%D)
IQC3058	IRZB0081_WG032807_0001 CMW026_WG032807_0001* IRZB0095_WG032807_0001**	Acetone 2-Butanone 1,2-Dibromo-3- chloropropane 2-Hexanone 4-Methyl-2-pentanone 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	J (all detects)	Р	Laboratory control samples (%R)

Boeing Realty Corp. Bldg. C-6 Facility Volatiles - Laboratory Blank Data Qualification Summary - SDG IQC3058

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P
IQC3058	IRZB0081_WG032807_0001 (4X)	Tetrahydrofuran	40U ug/L	А
IQC3058	IRZB0095_WG032807_0001** (5X)	Tetrahydrofuran	50U ug/L	A

Boeing Realty Corp. Bldg. C-6 Facility Volatiles - Data Qualification Summary - SDG IQC3058

SDG	Sample	Compound	Flag	A or P	Reason
IQC3058	CMW026_WG032807_0001* IRZB0095_WG032807_0001**	2-Butanone	J (all detects) UJ (all non-detects)	А	Initial calibration (%RSD)
IQC3058	CMW026_WG032807_0001* IRZB0095_WG032807_0001**	Acetone 2-Butanone 2,2-Dichloropropane 2-Hexanone	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D)
IQC3058	IRZB0081_WG032807_0001 CMW026_WG032807_0001* IRZB0095_WG032807_0001**	Acetone 2-Butanone 1,2-Dibromo-3-chloropropane 2-Hexanone 4-Methyl-2-pentanone 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	J (all detects)	Р	Laboratory control samples (%R)

Boeing Realty Corp. Bldg. C-6 Facility Volatiles - Laboratory Blank Data Qualification Summary - SDG IQC3058

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P
IQC3058	IRZB0081_WG032807_0001 (4X)	Tetrahydrofuran	40U ug/L	А
IQC3058	IRZB0095_WG032807_0001** (5X)	Tetrahydrofuran	50U ug/L	А

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

Project ID: Boeing C-6 Torrance

701 N. Parkcenter Drive

EM2727

Santa Ana, CA 92705

Report Number: IQC3058

Sampled: 03/28/07

Received: 03/28/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQC3058-05 (IRZB0081	WG032807 0001 - W	ater)							
Reporting Units: ug/l		,							
Acetone	EPA 8260B	7D03010	18	40	ND	4	04/03/07	04/03/07	C, L
Benzene	EPA 8260B	7D03010	1.1	4.0	1.2	4	04/03/07	04/03/07	J
Bromobenzene	EPA 8260B	7D03010	1.1	4.0	ND	4	04/03/07	04/03/07	
Bromochloromethane	EPA 8260B	7D03010	1.3	4.0	ND	4	04/03/07	04/03/07	
Bromodichloromethane	EPA 8260B	7D03010	1.2	4.0	ND	4	04/03/07	04/03/07	
Bromoform	EPA 8260B	7D03010	1.6	4.0	ND	4	04/03/07	04/03/07	
Bromomethane	EPA 8260B	7D03010	1.7	4.0	ND	4	04/03/07	04/03/07	
2-Butanone (MEK)	EPA 8260B	7D03010	15	20	ND	4	04/03/07	04/03/07	C, L
n-Butylbenzene	EPA 8260B	7D03010	1.5	4.0	ND	4	04/03/07	04/03/07	
sec-Butylbenzene	EPA 8260B	7D03010	1.0	4.0	ND	4	04/03/07	04/03/07	
tert-Butylbenzene	EPA 8260B	7D03010	0.88	4.0	ND	4	04/03/07	04/03/07	
Carbon Disulfide	EPA 8260B	7D03010	1.9	4.0	ND	4	04/03/07	04/03/07	
Carbon tetrachloride	EPA 8260B	7D03010	1.1	2.0	ND	4	04/03/07	04/03/07	
Chlorobenzene	EPA 8260B	7D03010	1.4	4.0	ND	4	04/03/07	04/03/07	
Chloroethane	EPA 8260B	7D03010	1.6	8.0	ND	4	04/03/07	04/03/07	
Chloroform	EPA 8260B	7D03010	1.3	4.0	1.3	4	04/03/07	04/03/07	J
Chloromethane	EPA 8260B	7D03010	1.6	8.0	ND	4	04/03/07	04/03/07	
2-Chlorotoluene	EPA 8260B	7D03010	1.1	4.0	ND	4	04/03/07	04/03/07	
4-Chlorotoluene	EPA 8260B	7D03010	1.2	4.0	ND	4	04/03/07	04/03/07	
1,2-Dibromo-3-chloropropane	EPA 8260B	7D03010	3.9	8.0	ND	4	04/03/07	04/03/07	L
Dibromochloromethane	EPA 8260B	7D03010	1.1	4.0	ND	4	04/03/07	04/03/07	
1,2-Dibromoethane (EDB)	EPA 8260B	7D03010	1.6	4.0	ND	4	04/03/07	04/03/07	
1,4-Dichlorobenzene	EPA 8260B	7D03010	1.5	4.0	ND	4	04/03/07	04/03/07	
1,2-Dichlorobenzene	EPA 8260B	7D03010	1.3	4.0	ND	4	04/03/07	04/03/07	
1,3-Dichlorobenzene	EPA 8260B	7D03010	1.4	4.0	ND	4	04/03/07	04/03/07	
Dichlorodifluoromethane	EPA 8260B	7D03010	3.2	4.0	ND	4	04/03/07	04/03/07	
1,2-Dichloroethane	EPA 8260B	7D03010	1.1	2.0	ND	4	04/03/07	04/03/07	
1,1-Dichloroethane	EPA 8260B	7D03010	1.1	4.0	ND	4	04/03/07	04/03/07	
1,1-Dichloroethene	EPA 8260B	7D03010	1.7	4.0	ND	4	04/03/07	04/03/07	
cis-1,2-Dichloroethene	EPA 8260B	7D03010	1.3	4.0	56	4	04/03/07	04/03/07	
trans-1,2-Dichloroethene	EPA 8260B	7D03010	1.1	4.0	8.3	4	04/03/07	04/03/07	
1,2-Dichloropropane	EPA 8260B	7D03010	1.4	4.0	ND	4	04/03/07	04/03/07	
2,2-Dichloropropane	EPA 8260B	7D03010	1.4	4.0	ND	4	04/03/07	04/03/07	
cis-1,3-Dichloropropene	EPA 8260B	7D03010	0.88	2.0	ND	4	04/03/07	04/03/07	
1,1-Dichloropropene	EPA 8260B	7D03010	1.1	4.0	ND	4	04/03/07	04/03/07	
trans-1,3-Dichloropropene	EPA 8260B	7D03010	1.3	2.0	ND	4	04/03/07	04/03/07	
Ethylbenzene	EPA 8260B	7D03010	1.0	4.0	ND	4	04/03/07	04/03/07	
Hexachlorobutadiene	EPA 8260B	7D03010	1.5	4.0	ND	4	04/03/07	04/03/07	
2-Hexanone	EPA 8260B	7D03010	10	24	ND	4	04/03/07	04/03/07	C, L
Iodomethane	EPA 8260B	7D03010	4.0	8.0	ND	4	04/03/07	04/03/07	
Isopropylbenzene	EPA 8260B	7D03010	1.0	4.0	ND	4	04/03/07	04/03/07	

TestAmerica - Irvine, CA

Nicholas Marz

Project Manager

1251407

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQC3058 < Page 11 of 68>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Project ID: Boeing C-6 Torrance

701 N. Parkcenter Drive Santa Ana, CA 92705 EM2727

Report Number: IQC3058

Sampled: 03/28/07 Received: 03/28/07

Attention: Mehmet Pehlivan

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date	Date	Data Qualifiers
Analyte	Method	Басси	Limit	Fillif	Resuit	ractor	Extracted	Analyzed	Quanners
Sample ID: IQC3058-05 (IRZB0081_W	/G032807_0001 - W	ater) - cont.							
Reporting Units: ug/l									
p-Isopropyltoluene	EPA 8260B	7D03010	1.1	4.0	ND	4	04/03/07	04/03/07	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	7D03010	1.3	4.0	ND	4	04/03/07	04/03/07	
Methylene chloride	EPA 8260B	7D03010	3.8	4.0	ND	4	04/03/07	04/03/07	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	7D03010	14	20	ND	4	04/03/07	04/03/07	L
n-Propylbenzene	EPA 8260B	7D03010	1.1	4.0	ND	4	04/03/07	04/03/07	
Styrene	EPA 8260B	7D03010	0.64	4.0	ND	4	04/03/07	04/03/07	
1,1,1,2-Tetrachloroethane	EPA 8260B	7D03010	1.1	4.0	ND	4	04/03/07	04/03/07	
1,1,2,2-Tetrachloroethane	EPA 8260B	7D03010	0.96	4.0	ND	4	04/03/07	04/03/07	L
Tetrachloroethene	EPA 8260B	7D03010	1.3	4.0	ND .	4	04/03/07	04/03/07	
Tetrahydrofuran (THF)	EPA 8260B	7D03010	14	40	22 4	DU 4	04/03/07	04/03/07	B, J
Toluene	EPA 8260B	7D03010	1.4	4.0	ND	4	04/03/07	04/03/07	
1,2,3-Trichlorobenzene	EPA 8260B	7D03010	1.2	4.0	ND	4	04/03/07	04/03/07	
1,2,4-Trichlorobenzene	EPA 8260B	7D03010	1.9	4.0	ND	4	04/03/07	04/03/07	
1,1,2-Trichloroethane	EPA 8260B	7D03010	1.2	4.0	ND	4	04/03/07	04/03/07	
1,1,1-Trichloroethane	EPA 8260B	7D03010	1.2	4.0	ND	4	04/03/07	04/03/07	
Trichloroethene	EPA 8260B	7D03010	1.0	4.0	17	4	04/03/07	04/03/07	
Trichlorofluoromethane	EPA 8260B	7D03010	1.4	8.0	ND	4	04/03/07	04/03/07	
1,2,3-Trichloropropane	EPA 8260B	7D03010	1.6	4.0	ND	4	04/03/07	04/03/07	L
1,2,4-Trimethylbenzene	EPA 8260B	7D03010	0.92	4.0	ND	4	04/03/07	04/03/07	
1,3,5-Trimethylbenzene	EPA 8260B	7D03010	1.0	4.0	ND	4	04/03/07	04/03/07	
Vinyl acetate	EPA 8260B	7D03010	6.8	24	ND	4	04/03/07	04/03/07	
Xylenes, Total	EPA 8260B	7D03010	3.6	4.0	ND	4	04/03/07	04/03/07	
Surrogate: 4-Bromofluorobenzene (80-12				101 %					
Surrogate: Dibromofluoromethane (80-1	20%)				109 %				
Surrogate: Toluene-d8 (80-120%)					110 %				

TestAmerica - Irvine, CA Nicholas Marz Project Manager

Pos/401

IQC3058 <Page 12 of 68>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

701 N. Parkcenter Drive

Santa Ana, CA 92705

Project ID: Boeing C-6 Torrance

EM2727

Report Number: IQC3058

Sampled: 03/28/07

Received: 03/28/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQC3058-05RE1 (IRZB0081_WG032807_0001 - Water) - cont.									
Reporting Units: ug/l									
Vinyl chloride	EPA 8260B	7D03008	6.0	10	1300	20	04/03/07	04/03/07	
Surrogate: 4-Bromofluorobenzene (80-12				93 %					
Surrogate: Dibromofluoromethane (80-12			90 %						
Surrogate: Toluene-d8 (80-120%)				98 %					

TestAmerica - Irvine, CA Nicholas Marz Project Manager

M251407

IQC3058 <Page 13 of 68>

Test America

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, 1rvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing 701 N. Parkcenter Drive

Project ID: Boeing C-6 Torrance

EM2727

Santa Ana, CA 92705 Attention: Mehmet Pehlivan Report Number: IQC3058

Sampled: 03/28/07

Received: 03/28/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQC3058-06 (CMW02	26 WG032807 0001 - W	ater)						•	
Reporting Units: ug/l		/							
Acetone	EPA 8260B	7D03010	4.5	10	ND U	ι 7	04/03/07	04/03/07	C, L
Benzene	EPA 8260B	7D03010	0.28	1.0	0.36	، ر 1	04/03/07	04/03/07	C, L
Bromobenzene	EPA 8260B	7D03010	0.27	1.0	ND	1	04/03/07	04/03/07	,
Bromochloromethane	EPA 8260B	7D03010	0.32	1.0	ND	1	04/03/07	04/03/07	
Bromodichloromethane	EPA 8260B	7D03010	0.30	1.0	ND	1	04/03/07	04/03/07	
Bromoform	EPA 8260B	7D03010	0.40	1.0	ND	1	04/03/07	04/03/07	
Bromomethane	EPA 8260B	7D03010	0.42	1.0	ND	1	04/03/07	04/03/07	
2-Butanone (MEK)	EPA 8260B	7D03010	3.8	5.0	ND U	1	04/03/07	04/03/07	C, L
n-Butylbenzene	EPA 8260B	7D03010	0.37	1.0	ND	1	04/03/07	04/03/07	C, <u>D</u>
sec-ButyIbenzene	EPA 8260B	7D03010	0.25	1.0	ND	1	04/03/07	04/03/07	
tert-Butylbenzene	EPA 8260B	7D03010	0.22	1.0	ND	1	04/03/07	04/03/07	
Carbon Disulfide	EPA 8260B	7D03010	0.48	1.0	ND	1	04/03/07	04/03/07	
Carbon tetrachloride	EPA 8260B	7D03010	0.28	0.50	ND	1	04/03/07	04/03/07	
Chlorobenzene	EPA 8260B	7D03010	0.36	1.0	ND	1	04/03/07	04/03/07	
Chloroethane	EPA 8260B	7D03010	0.40	2.0	ND	1	04/03/07	04/03/07	
Chloroform	EPA 8260B	7D03010	0.33	1.0	ND	Ī	04/03/07	04/03/07	
Chloromethane	EPA 8260B	7D03010	0.40	2.0	ND	1	04/03/07	04/03/07	
2-Chlorotoluene	EPA 8260B	7D03010	0.28	1.0	ND	1	04/03/07	04/03/07	
4-Chlorotoluene	EPA 8260B	7D03010	0.29	1.0	ND	1	04/03/07	04/03/07	
1,2-Dibromo-3-chloropropane	EPA 8260B	7D03010	0.97	2.0	ND	1	04/03/07	04/03/07	L
Dibromochloromethane	EPA 8260B	7D03010	0.28	1.0	ND	Ī	04/03/07	04/03/07	L
1,2-Dibromoethane (EDB)	EPA 8260B	7D03010	0.40	1.0	ND	1	04/03/07	04/03/07	
1,4-Dichlorobenzene	EPA 8260B	7D03010	0.37	1.0	ND	1	04/03/07	04/03/07	
1,2-Dichlorobenzene	EPA 8260B	7D03010	0.32	1.0	ND	1	04/03/07	04/03/07	
1,3-Dichlorobenzene	EPA 8260B	7D03010	0.35	1.0	ND	1	04/03/07	04/03/07	
Dichlorodifluoromethane	EPA 8260B	7D03010	0.79	1.0	ND	Ī	04/03/07	04/03/07	
1,2-Dichloroethane	EPA 8260B	7D03010	0.28	0.50	ND	j	04/03/07	04/03/07	
1,1-Dichloroethane	EPA 8260B	7D03010	0.27	1.0	5.2	1	04/03/07	04/03/07	
1,1-Dichloroethene	EPA 8260B	7D03010	0.42	1.0	79	1	04/03/07	04/03/07	
trans-1,2-Dichloroethene	EPA 8260B	7D03010	0.27	1.0	3.2	1	04/03/07	04/03/07	
1,2-Dichloropropane	EPA 8260B	7D03010	0.35	1.0	ND	1	04/03/07	04/03/07	
2,2-Dichloropropane	EPA 8260B	7D03010	0.34	1.0	LN DN	1	04/03/07	04/03/07	
cis-1,3-Dichloropropene	EPA 8260B	7D03010	0.22	0.50	ND	Ī	04/03/07	04/03/07	
1,1-Dichloropropene	EPA 8260B	7D03010	0.28	1.0	ND	j	04/03/07	04/03/07	
trans-1,3-Dichloropropene	EPA 8260B	7D03010	0.32	0.50	ND	Ī	04/03/07	04/03/07	
Ethylhenzene	EPA 8260B	7D03010	0.25	1.0	ND		04/03/07	04/03/07	
Hexachlorobutadiene	EPA 8260B	7D03010	0.38	1.0	ND		04/03/07	04/03/07	
2-Hexanone	EPA 8260B	7D03010	2.6	6.0	LUDN		04/03/07	04/03/07	CI
lodomethane	EPA 8260B	7D03010	1.0	2.0	ND		04/03/07	04/03/07	C, L
Isopropylbenzene	EPA 8260B	7D03010	0.25	1.0	ND		04/03/07	04/03/07	
p-lsopropyltoluene	EPA 8260B	7D03010	0.28	1.0	ND		04/03/07	04/03/07	
TastAmorias Imina CA					,,,,	,	V4/U3/U/	04/03/0/	

TestAmerica - Irvine, CA

Nicholas Marz

Project Manager

MINOT

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. except in full, without written permission from TestAmerica.

1QC3058 <Page 14 of 68>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Project ID: Boeing C-6 Torrance

701 N. Parkcenter Drive

EM2727

Santa Ana, CA 92705 Report Number: IQC3058

Sampled: 03/28/07

Attention: Mehmet Pehlivan

Received: 03/28/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC3058-06 (CMW026)	Sample ID: 1QC3058-06 (CMW026_WG032807_0001 - Water) - cont.						2411	/ Laminy Dec	C
Reporting Units: ug/l									
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	7D03010	0.32	1.0	ND	1	04/03/07	04/03/07	
Methylene chloride	EPA 8260B	7D03010	0.95	1.0	ND	1	04/03/07	04/03/07	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	7D03010	3.5	5.0	ND	1	04/03/07	04/03/07	L
n-Propylbenzene	EPA 8260B	7D03010	0.27	1.0	ND	1	04/03/07	04/03/07	
Styrene	EPA 8260B	7D03010	0.16	1.0	ND	1	04/03/07	04/03/07	
1,1,1,2-Tetrachloroethane	EPA 8260B	7D03010	0.27	1.0	ND	1	04/03/07	04/03/07	
1,1,2,2-Tetrachloroethane	EPA 8260B	7D03010	0.24	1.0	ND	1	04/03/07	04/03/07	L
Tetrachloroethene	EPA 8260B	7D03010	0.32	1.0	ND	1	04/03/07	04/03/07	
Tetrahydrofuran (THF)	EPA 8260B	7D03010	3.5	10	ND	1	04/03/07	04/03/07	
Toluene	EPA 8260B	7D03010	0.36	1.0	ND	1	04/03/07	04/03/07	
1,2,3-Trichlorobenzene	EPA 8260B	7D03010	0.30	1.0	ND	1	04/03/07	04/03/07	
1,2,4-Trichlorobenzene	EPA 8260B	7D03010	0.48	1.0	ND	1	04/03/07	04/03/07	
1,1,2-Trichloroethane	EPA 8260B	7D03010	0.30	1.0	ND	1	04/03/07	04/03/07	
1,1,1-Trichloroethane	EPA 8260B	7D03010	0.30	1.0	ND	1	04/03/07	04/03/07	
Trichloroethene	EPA 8260B	7D03010	0.26	1.0	58	1	04/03/07	04/03/07	
Trichlorofluoromethane	EPA 8260B	7D03010	0.34	2.0	ND	1	04/03/07	04/03/07	
1,2,3-Trichloropropane	EPA 8260B	7D03010	0.40	1.0	ND	1	04/03/07	04/03/07	L
1,2,4-Trimethylbenzene	EPA 8260B	7D03010	0.23	1.0	ND	1	04/03/07	04/03/07	
1,3,5-Trimethylbenzene	EPA 8260B	7D03010	0.26	1.0	ND	1	04/03/07	04/03/07	
Vinyl acetate	EPA 8260B	7D03010	1.7	6.0	ND	1	04/03/07	04/03/07	
Xylenes, Total	EPA 8260B	7D03010	0.90	1.0	ND	1	04/03/07	04/03/07	
Surrogate: 4-Bromofluorobenzene (80-	120%)				102 %				
urrogate: Dibromofluoromethane (80-120%)					115 %				
Surrogate: Toluene-d8 (80-120%)				110 %					

TestAmerica - Irvine, CA Nicholas Marz Project Manager

Rositos

IQC3058 < Page 15 of 68>

ANALYTICAL TESTING CORPORATION 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

Project ID: Boeing C-6 Torrance

701 N. Parkcenter Drive

EM2727

Sampled: 03/28/07

Santa Ana, CA 92705

Report Number: IQC3058

Received: 03/28/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQC3058-06RE1 (CMW02	26_WG032807_0001	nt.					•		
Reporting Units: ug/l									
cis-1,2-Dichloroethene	EPA 8260B	7D03008	3.2	10	530	10	04/03/07	04/03/07	
Vinyl chloride	EPA 8260B	7D03008	3.0	5.0	220	10	04/03/07	04/03/07	
Surrogate: 4-Bromofluorobenzene (80-120%)					94 %				
Surrogate: Dibromofluoromethane (80-			90 %						
Surrogate: Toluene-d8 (80-120%)					99 %				

TestAmerica - Irvine, CANicholas Marz
Project Manager

Pos1401

IQC3058 < Page 16 of 68>

Test America

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing 701 N. Parkcenter Drive

Attention: Mehmet Pehlivan

Santa Ana, CA 92705

Project ID: Boeing C-6 Torrance

EM2727

Report Number: IQC3058

Sampled: 03/28/07

Received: 03/28/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQC3058-08 (IRZB009	5_WG032807_0001 - V	Water)							
Reporting Units: ug/l		,							
Acetone	EPA 8260B	7D03010	22	50	ND U	5 5	04/03/07	04/03/07	C, L
Benzene	EPA 8260B	7D03010	1.4	5.0	ND	5	04/03/07	04/03/07	C, L
Bromobenzene	EPA 8260B	7D03010	1.4	5.0	ND	5	04/03/07	04/03/07	
Bromochloromethane	EPA 8260B	7D03010	1.6	5.0	ND	5	04/03/07	04/03/07	
Bromodichloromethane	EPA 8260B	7D03010	1.5	5.0	ND	5	04/03/07	04/03/07	
Bromoform	EPA 8260B	7D03010	2.0	5.0	ND	5	04/03/07	04/03/07	
Bromomethane	EPA 8260B	7D03010	2.1	5.0	ND	5	04/03/07	04/03/07	
2-Butanone (MEK)	EPA 8260B	7D03010	19	25	NDUT		04/03/07	04/03/07	C, L
n-Butylbenzene	EPA 8260B	7D03010	1.8	5.0	ND	5	04/03/07	04/03/07	C, L
sec-Butylbenzene	EPA 8260B	7D03010	1.2	5.0	ND	5	04/03/07	04/03/07	
tert-Butylbenzene	EPA 8260B	7D03010	1.1	5.0	ND	5	04/03/07	04/03/07	
Carbon Disulfide	EPA 8260B	7D03010	2.4	5.0	ND	5	04/03/07	04/03/07	
Carbon tetrachloride	EPA 8260B	7D03010	1.4	2.5	ND	5	04/03/07	04/03/07	
Chlorobenzene	EPA 8260B	7D03010	1.8	5.0	ND	5	04/03/07	04/03/07	
Chloroethane	EPA 8260B	7D03010	2.0	10	ND	5	04/03/07	04/03/07	
Chloroform	EPA 8260B	7D03010	1.6	5.0	ND	5	04/03/07	04/03/07	
Chloromethane	EPA 8260B	7D03010	2.0	10	ND	5	04/03/07	04/03/07	
2-Chlorotoluene	EPA 8260B	7D03010	1.4	5.0	ND	5	04/03/07	04/03/07	
4-Chlorotoluene	EPA 8260B	7D03010	1.4	5.0	ND	5	04/03/07	04/03/07	
1,2-Dibromo-3-chloropropane	EPA 8260B	7D03010	4.8	10	ND	5	04/03/07	04/03/07	L
Dibromochloromethane	EPA 8260B	7D03010	1.4	5.0	ND	5	04/03/07	04/03/07	_
1,2-Dibromoethane (EDB)	EPA 8260B	7D03010	2.0	5.0	ND	5	04/03/07	04/03/07	
1,4-Dichlorobenzene	EPA 8260B	7D03010	1.8	5.0	ND	5	04/03/07	04/03/07	
1,2-Dichlorobenzene	EPA 8260B	7D03010	1.6	5.0	ND	5	04/03/07	04/03/07	
1,3-Dichlorobenzene	EPA 8260B	7D03010	1.8	5.0	ND	5	04/03/07	04/03/07	
Dichlorodifluoromethane	EPA 8260B	7D03010	4.0	5.0	ND	5	04/03/07	04/03/07	
1,2-Dichloroethane	EPA 8260B	7D03010	1.4	2.5	ND	5	04/03/07	04/03/07	
1,1-Dichloroethane	EPA 8260B	7D03010	1.4	5.0	ND	5	04/03/07	04/03/07	
1,1-Dichloroethene	EPA 8260B	7D03010	2.1	5.0	4.0	5	04/03/07	04/03/07	J
cis-1,2-Dichlorocthene	EPA 8260B	7D03010	1.6	5.0	330	5	04/03/07	04/03/07	•
trans-1,2-Dichloroethene	EPA 8260B	7D03010	1.4	5.0	5.5	5	04/03/07	04/03/07	
1,2-Dichloropropane	EPA 8260B	7D03010	1.8	5.0	ND	5	04/03/07	04/03/07	
2,2-Dichloropropane	EPA 8260B	7D03010	1.7	5.0	ND UJ	5	04/03/07	04/03/07	
cis-1,3-Dichloropropene	EPA 8260B	7D03010	1.1	2.5	ND	5	04/03/07	04/03/07	
1,1-Dichloropropene	EPA 8260B	7D03010	1.4	5.0	ND	5	04/03/07	04/03/07	
trans-1,3-Dichloropropene	EPA 8260B	7D03010	1.6	2.5	ND	5	04/03/07	04/03/07	
Ethylbenzene	EPA 8260B	7D03010	1.2	5.0	ND	5	04/03/07	04/03/07	
Hexachlorobutadiene	EPA 8260B	7D03010	1.9	5.0	ND	5	04/03/07	04/03/07	
2-Hexanone	EPA 8260B	7D03010	13	30	LN DN	5	04/03/07	04/03/07	C, L
lodomethane	EPA 8260B	7D03010	5.0	10	ND		04/03/07	04/03/07	-, -
lsopropylbenzene	EPA 8260B	7D03010	1.2	5.0	ND		04/03/07	04/03/07	
Test America - Invine CA									

TestAmerica - Irvine, CA

Nicholas Marz

Project Manager

しょしり

1QC3058 <Page 20 of 68>

Test/America

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Santa Ana, CA 92705 Attention: Mehmet Pehlivan Project ID: Boeing C-6 Torrance

EM2727

Report Number: IQC3058

Sampled: 03/28/07

Received: 03/28/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQC3058-08 (IRZB0095_W	G032807 0001 - W	ater) - cont.						·	
Reporting Units: ug/l	-	,							
p-lsopropyltoluene	EPA 8260B	7D03010	1.4	5.0	ND	5	04/03/07	04/03/07	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	7D03010	1.6	5.0	ND	5	04/03/07	04/03/07	
Methylene chloride	EPA 8260B	7D03010	4.8	5.0	ND	5	04/03/07	04/03/07	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	7D03010	18	25	ND	5	04/03/07	04/03/07	L
n-Propylbenzene	EPA 8260B	7D03010	1.4	5.0	ND	5	04/03/07	04/03/07	
Styrene	EPA 8260B	7D03010	0.80	5.0	ND	5	04/03/07	04/03/07	
1,1,1,2-Tetrachloroethane	EPA 8260B	7D03010	1.4	5.0	ND	5	04/03/07	04/03/07	
1,1,2,2-Tetrachloroethane	EPA 8260B	7D03010	1.2	5.0	ND	5	04/03/07	04/03/07	L
Tetrachloroethene	EPA 8260B	7D03010	1.6	5.0	4.7	5	04/03/07	04/03/07	J
Tetrahydrofuran (THF)	EPA 8260B	7D03010	18	50	27 5	OU 5	04/03/07	04/03/07	B, J
Toluene	EPA 8260B	7D03010	1.8	5.0	ND	5	04/03/07	04/03/07	
1,2,3-Trichlorobenzene	EPA 8260B	7D03010	1.5	5.0	ND	5	04/03/07	04/03/07	
1,2,4-Trichlorobenzene	EPA 8260B	7D03010	2.4	5.0	ND	5	04/03/07	04/03/07	
1,1,2-Trichloroethane	EPA 8260B	7D03010	1.5	5.0	ND	5	04/03/07	04/03/07	
1,1,1-Trichloroethane	EPA 8260B	7D03010	1.5	5.0	ND	5	04/03/07	04/03/07	
Trichloroethene	EPA 8260B	7D03010	1.3	5.0	37	5	04/03/07	04/03/07	
Trichlorofluoromethane	EPA 8260B	7D03010	1.7	10	ND	5	04/03/07	04/03/07	
1,2,3-Trichloropropane	EPA 8260B	7D03010	2.0	5.0	ND	5	04/03/07	04/03/07	L
1,2,4-Trimethylbenzene	EPA 8260B	7D03010	1.2	5.0	ND	5	04/03/07	04/03/07	
1,3,5-Trimethylbenzene	EPA 8260B	7D03010	1.3	5.0	ND	5	04/03/07	04/03/07	
Vinyl acetate	EPA 8260B	7D03010	8.5	30	ND	5	04/03/07	04/03/07	
Xylenes, Total	EPA 8260B	7D03010	4.5	5.0	ND	5	04/03/07	04/03/07	
Surrogate: 4-Bromofluorobenzene (80-120%)					102 %				
rrogate: Dibromofluoromethane (80-120%)					109 %				
urrogate: Toluene-d8 (80-120%)					109 %				

TestAmerica - Irvine, CANicholas Marz
Project Manager

Mocifor

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Santa Ana, CA 92705 Attention: Mehmet Pehlivan Project ID: Boeing C-6 Torrance

EM2727

Report Number: IQC3058

Sampled: 03/28/07

Received: 03/28/07

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQC3058-08RE1 (IRZB0095_WG032807_0001 - Water) - cont.									
Reporting Units: ug/l									
Vinyl chloride	EPA 8260B	7D03008	6.0	10	1500	20	04/03/07	04/03/07	
Surrogate: 4-Bromofluorobenzene (80-120				94 %					
Surrogate: Dibromofluoromethane (80-120%)					94 %				
Surrogate: Toluene-d8 (80-120%)					98 %				

TestAmerica - Irvine, CA Nicholas Marz Project Manager

Past407

LDC #: 16756A1	VALIDATION COMPLETENESS WORKSHEET	Date: 5/12
SDG #: IQC3058	Tier 1/2/3	Page:_/_of_ [/]
Laboratory: Test America		Reviewer:
-		2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 3 28 07
II.	GC/MS Instrument performance check	Δ	Not reviewed for Tier I validation.
111.	Initial calibration	SW	Not reviewed for Tier I validation.
IV.	Continuing calibration	SVAV	Not reviewed for Tier I validation.
V.	Blanks	SW	
VI.	Surrogate spikes	Δ	
VII.	Matrix spike/Matrix spike duplicates	N	client specifier
VIII.	Laboratory control samples	SW	Les
IX.	Regional Quality Assurance and Quality Control	N	
Χ.	Internal standards	۵	
XI.	Target compound identification	Δ	Not reviewed for Tier I & II validation.
XII.	Compound quantitation/CRQLs	4	Not reviewed for Tier I & II validation.
XIII.	Tentatively identified compounds (TICs)	7	Not reviewed for Tier I & II validation. NOT Pepor feel
XIV.	System performance	Δ	Not reviewed for Tier I & II validation.
XV.	Overall assessment of data	A	
XVI.	Field duplicates	N	
XVII.	Field blanks	N	

Note: A = Acceptable

ND = No compounds detected

D = Duplicate

N = Not provided/applicable SW = See worksheet

R = Rinsate FB = Field blank TB = Trip blank EB = Equipment blank

Validated Samples:*Indicates sample underwent Tier I validation **Indicates sample underwent Tier III validation

		w awr					
ا ءَ	1 \	2 = C IRZB0081_WG032807_0001*	11 \	7003010-BIK)	21	31	
اما	2 \	2 උ උ , සුසුයු CMW026_WG032807_0001	12 2	7003008-814)	22	32	
૪	3 \	2 = C IRZB0095_WG032807_0001**	13		23	 33	
	4		14		24	34	
	5		15		25	 35	
	6		16		26	36	
l	7		17		27	37	
l	8		18		28	38	
l	9		19		29	39	
	10		20		30	40	

_DC #:	16756A)	
SDG #:	sie could	′

VALIDATION FINDINGS CHECKLIST

Page:_/of2	
Reviewer: 177	
2nd Reviewer:	
	

Method: Volatiles (EPA SW 846 Method 8260B)

				
Validation Area	Yes	No	NA	Findings/Comments
All tachnical holding times were met		Ī		T
All technical holding times were met.		 	1	
Cooler temperature criteria was met. IL 60 MS tistrum entre commande check				
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?	/			·
Did the laboratory perform a 5 point calibration prior to sample analysis?	/		<u> </u>	
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	/			
Was a curve fit used for evaluation?	/			
Did the initial calibration meet the curve fit acceptance criteria of > 0.990?	/			
Were all percent relative standard deviations (%RSD) ≤ 30% and relative response factors (RRF) ≥ 0.05?	W	/		
IV.Contlaning calibration.				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?			,	
Were all percent differences (%D) ≤ 28% and relative response factors (RRF) ≥ 0.05?				
VEHANKS I 1990 C. D. C.				A Company of Company o
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
W Winds in the second of the s				
Were all surrogate %R within QC limits?				
f the percent recovery (%R) for one or more surrogates was out of QC limits, was a eanalysis performed to confirm samples with %R outside of criteria?				
II Matrix spike/Matrix spike duplicates				
Vere a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each natrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.			1	
Vas a MS/MSD analyzed every 20 samples of each matrix?			1	
Vere the MS/MSD percent recoveries (%R) and the relative percent differences RPD) within the QC limits?			7	
Alls Laboratory control samples				
Vas an LCS analyzed for this SDG?	1			

.DC #:	16756A)			
3DG #:				

VALIDATION FINDINGS CHECKLIST

Page:_	3 f	2
Reviewer:	B	_
2nd Reviewer:	1	

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				A section .
Le ristional Enauty Assurance and enalty/Control				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				
X appernation and a second sec				
Were internal standard area counts within -50% or +100% of the associated calibration standard?				
Were retention times within + 30 seconds of the associated calibration standard?		3/33)×4/3/33 [1/2/2/	775V -6VC-2277	
Malage Cathy out the Commission of the Commissio				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
Alla Compound squamuanon/CRGNs	<u> </u>			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII vegialiyelvadentined.compaunds (TICs) (1.75 % % % % % % % % % % % % % % % % % % %				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?			1	
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?			1	
Did the raw data indicate that the laboratory performed a library search for all equired peaks in the chromatograms (samples and blanks)?			1	
IVasystem performance, its answer to the second sec				
System performance was found to be acceptable.	1			
V_9varal assessment pl data (
Overall assessment of data was found to be acceptable.				
V) Field dublicates				
ield duplicate pairs were identified in this SDG.		/		
arget compounds were detected in the field duplicates.			7	
VILIFIER Blanks				same same same same same same same same
ield blanks were identified in this SDG.		1		
arget compounds were detected in the field blanks.			1	

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	S. Trichloroethene	KK. Trichlorofluoromethane	CCC. tert-Butylbenzene	INNA 4.0 Diable-states
B. Bromomethane	T. Dibromochloromethane	LL. Methyl-tert-butyl ether	DDD. 1,2,4-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane
C. Vinyl choride**	U. 1,1,2-Trichloroethane	MM. 1,2-Dibromo-3-chloropropane		VVV. 4-Ethyltoluene
D. Chloroethane	V. Benzene	NN. Methyl ethyl ketone	EEE. sec-Butylbenzene	WWW. Ethanol
E. Methylene chloride	W. trans-1,3-Dichloropropene	OO. 2,2-Dichloropropane	FFF. 1,3-Dichlorobenzene	XXX. Di-isopropyl ether
F. Acetone	X. Bromoform*		GGG. p-Isopropyltoluene	YYY. tert-Butanol
G. Carbon disulfide		PP. Bromochioromethane	HHH. 1,4-Dichlorobenzene	ZZZ, tert-Butyl alcohol
	Y. 4-Methyl-2-pentanone	QQ. 1,1-Dichloropropene	III. n-Butylbenzene	AAAA. Ethyl tert-butyl ether
H. 1,1-Dichloroethene**	Z. 2-Hexanone	RR. Dibromomethane	JJJ. 1,2-Dichlorobenzene	BBBB, tert-Amyl methyl ether
I. 1,1-Dichloroethane*	AA. Tetrachloroethene	SS. 1,3-Dichloropropane	KKK. 1,2,4-Trichlorobenzene	CCCC.1-Chlorohexane
J. 1,2-Dichloroethene, total	BB. 1,1,2,2-Tetrachloroethane*	TT. 1,2-Dibromoethane	LLL. Hexachlorobutadiene	
K. Chloroform**	CC. Toluene**	UU. 1,1,1,2-Tetrachloroethane	MMM. Naphthalene	DDDD. Isopropyl alcohol
L. 1,2-Dichloroethane	DD. Chlorobenzene*	W. Isopropylbenzene		EEEE. Acetonitrile
M. 2-Butanone	EE. Ethylbenzene**	WW. Bromobenzene	NNN. 1,2,3-Trichlorobenzene	FFFF. Acrolein
N. 1,1,1-Trichloroethane		WW. Brombbanzene	OOO. 1,3,5-Trichlorobenzene	GGGG. Acrylonitrile
	FF. Styrene	XX. 1,2,3-Trichloropropane	PPP. trans-1,2-Dichloroethene	HHHH. 1,4-Dioxane
O. Carbon tetrachloride	GG. Xylenes, total	YY. n-Propylbenzene	QQQ. cis-1,2-Dichtoroethene	IIII. Isobutyi alcohol
P. Bromodichloromethane	HH. Vinyl acetate	ZZ. 2-Chlorotoluene	RRR. m,p-Xylenes	JJJJ. Methacrylonitrile
Q. 1,2-Dichioropropane**	II. 2-Chloroethylvinyl ether	AAA. 1,3,5-Trimethylbenzene	SSS, o-Xylene	
R. cls-1,3-Dichloropropene	JJ. Dichlorodifluoromethane	BBB. 4-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	KKKK. Propionitrile

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

LDC #:	ض250	A)
SDG #:	sec.	could

VALIDATION FINDINGS WORKSHEET Initial Calibration

	Page:_	
	Reviewer:	<u></u>
d	Reviewer:	X

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see	qualifications	below for a	I questions	s answered "N	i". No	t applicable	questions	are identified a	as "N/A".
------------	----------------	-------------	-------------	---------------	--------	--------------	-----------	------------------	-----------

Did the laboratory perform a 5 point calibration prior to sample analysis?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?_

Did the initial calibration meet the acceptance criteria?

	Date	Standard ID	Compound	Finding %RSD (Limit: ≤30.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
Ť	22807	1CAL-60	W		0. 037	7003010-BLKI,	AWIL
1			•			2,3 FB AH	
							d
		·					
	· · · · · · · · · · · · · · · · · · ·						
							-
	<u> </u>						
				·			
	1						

LDC #:	1675641
SDG #:	16C3050

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	1 of)
Reviewer:_	F7
2nd Reviewer:	il

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?
Were all %D and RRFs within the validation criteria of <25 %D and >0.05 RRF? N/N/A

-()	<u>/N/A</u> V	Vere all %D and RRFs	within the validation of				
#	Date	Standard ID	Compound	Finding %D (Limit: <25.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	4307	ceV	۴	109.3		A11 + 7003010-BLF	1 LINJ/A
	9:13AM		M	70.3	\cap	11 + 7003010-BLF	
			90	29.1	<i>d</i>		
			Z	63.9		.	

		· · · · · · · · · · · · · · · · · · ·		***************************************			
				······································			
					· · · · · · · · · · · · · · · · · · ·		
					·		

LDC	#:	16756	2A)
			coner

VALIDATION FINDINGS WORKSHEET Blanks

	Page:	6f	1
	Reviewer:	K	
2nd	Reviewer:		

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank associated with every sample in this SDG?

Was a method blank analyzed at least once every 12 hours for each matrix and concentration? N N/A

Was there contamination in the method blanks? If yes, please see the qualifications below.

Blank analysis date: 4/3/07

Conc. units: Mall

X 11 Associated Samples:

		/10	Socialeu Sai	Tiples	411				•	
Compound	Blank ID	·	Sample Identification							
Tetrahudreturan Methylene chiloride	7003010-	BLK !	1 (4x)	2	3 (SX)					
Methylene chloride	8.04		22/404	_	27/504					
Acetone S	0.480		(17)	(58)	37)					
	ļ									
						-				
;		<u> </u>								
CRQL	<u> </u>	<u> </u>								

Blank analysis date:	
Conc. units:	

Associated Samples:

			, to-octated comples.							
Compound	Blank ID		Sample Identification							
		,								
Methylene chloride										
Acetone										
		_								***
	·									
									·	
CRQL										

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC #:_	1675	6A)
	su	

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

i.	Page:	of
	Reviewer:	<i></i>
nd	Reviewer:	be

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Y N N/A Was a LCS required?

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		7003010-851	F	263 (30-140)	()	()	All+BIK	J Part
		-	M	237 (40-140)	()	()		
			мм	138 (50-135)	()	()		
			Z	211 (45-140	()	()		
			7	144 (45-140)	()	()		
			BB	134 (55-130)	()	()		
			ΧX	136 (60-130)	()	()		
				()	()	()		
				()	()	()	i	
	:			()	()	()		
				()	()	()		
				()	. (()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
-				()	()	()		
				()	()	()		
-			 	()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		

LDC	#:_	167	<u> </u>	A)	
		pi			~

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

1	Page:	61
	Reviewer:	17
2nd	Reviewer:	a

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the

 $RRF = (A_{x})(C_{b})/(A_{b})(C_{y})$ average RRF = sum of the RRFs/number of standards

 $A_x = Area of compound.$

A_k = Area of associated internal standard

%RSD = 100 * (S/X)

 $\hat{C_x}$ = Concentration of compound, S = Standard deviation of the RRFs

C_k = Concentration of internal standard

X = Mean of the RRFs

		0-11		Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (black)	RRF (\(\(\text{D} \) std)	Average RRF (initial)	Average RRF (initial)	 %RSD	
1	1GAL -60	2/28/07	Methylene chloride (1st internal standard)	0.434	m :12/				%RSD
			Trichlorethene (2nd internal standard)	0.314	0.436	0.474	0.47.24	1.78	7-18
			Efful Benzan Teluene (3rd internal standard)	1.589	1.589	0.33	0.33)	5.92	5.92
2			Nethylene chloride (1st internal standard)	1.306		1.623	1.623	4.92	4.92
			Trichlorethene (2nd internal standard)	1.90 6	1.306	1.314	1.314	10.24	10.24
			Toluene (3rd internal standard)						· · · · · · · · · · · · · · · · · · ·
3	1CAL -34	3/29/07	Withytene chloride (1st internal standard)	0.528	0.528	n .14.2	- 10		1
			Trichlorethene (2nd internal standard)		3.3.0	0.473	0.43	6.27	6.27
			Toluene (3rd internal standard)				<u> </u>		
4			Methylene chloride (1st internal standard)						· <u>·</u>
	•		Trichlorethene (2nd internal standard)		· · · · · · · · · · · · · · · · · · ·				
			Toluene (3rd internal standard)					<u> </u>	

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the

BOE-C6-0054837

INICLC.1SB

LDC #: 16756A) SDG #: see could

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	
Reviewer:	B
2nd Reviewer:	4

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_{\nu})(C_{b})/(A_{b})(C_{\nu})$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

A_x = Area of compound,

A_k = Area of associated internal standard

 $C_x = Concentration of compound,$

C_b = Concentration of internal standard

	.:	·			Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	cev 9:13	4/3/07	Methylene chloride (1st internal standard)	0.474	0.468	0.468	1.3	1.3
			Trichlorethene (2nd internal standard)	0.33	0.357	0.357	7.9	7.9
			Feluene (3rd internal standard)	1.623	1-767	1.767	8.9	x.9
2			ハン DCB Methylene chloride (1st internal standard)	1.314	1.403	1.403	6,8	6-8
	·		Trichlorethene (2nd internal standard)		·			
			Toluene (3rd internal standard)	·				
3	cev 7:22	4/3/07	Viry) Methylene chloride (1st internal standard)	0.473	0.455	0.455	31 €	3-8
	, ,		Trichlorethene (2nd internal standard)					
			Toluene (3rd internal standard)					
4	ı		Methylene chloride (1st internal standard)					
			Trichlorethene (2nd internal standard)					
			Toluene (3rd Internal standard)					

Comments: Refer to Continuing Calibration find	ngs worksheet for list of qualifications and associated samples when reported results do not a	aroo within 10 00/ at the
recalculated results.	a separate description when reported results do not a	gree within 10.0% of the

BOE-C6-0054838

LDC #:_	167	5641
		coned

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Reviewer:
reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculatio			
The persont recoveries (9/R) of surrogates were recalculated for the compounds identified below using the following calculation			umala idanlifiad halow wing the tellowing eglettetten:
	The managed appearance	s were recalculated for the collico	BURDS ROCKELLINED DEIDM COLLO ILLE LOUDMING CAICCHALION.
	ine nerceni reciveres	2 Mete tecomogramed tot are correled	

% Recovery: SF/SS * 100

Where: SF = Surrogete Found SS = Surrogete Spiked

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8	75.0	27.33	109	109	p
Bromofuorobenzene		28.42	102	102	
1,2-Dichloroethane-d4					<u> - </u>
Dibromofluoromethane	· .	27.33	109	1 109	<u> </u>

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene	·		·		
1,2-Dichloroethane-d4					
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8			·		
Bromofluorobenzene				·	
1,2-Dichloroethane-d4					
Dibromofluoromethane		<u> </u>			

Sample ID:__

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					·
1,2-Dichloroethane-d4					4
Dibromofluoromethane					

Sample ID:

·	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8	·				
Bromofluorobenzene					
1,2-Dichloroethane-d4					·
Dibromofluoromethane	<u> </u>	·	·	·	<u></u>

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page:	l_{of}
Reviewer:_	F
2nd Reviewer:_	

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SA = Spike added

RPD = ILCS - LCSD I* 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: 7003010-BS

Compound	Ad	pike Ided レル)	Spiked Sample Concentration		LCS Percent Recovery		LCSD Percent Recovery		J CS/I CSD RPD	
	LCS	1 CSD	LCS	LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
1,1-Dichloroethene	% .0	NA	24.2	NA	91	91				
Trichloroethene			24.8		99	99			/	
Benzene		\	25.3		101	101				
Toluene			25.3		101	lol				
Chlorobenzene	<u> </u>	V	26.2		105	105	AN			
		·								
	- " " " - " - " - " - " - " - " - " - "									

omments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the
calculated results.

DC #:	16756A	
SDG #:	18030	58

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	/of_/_
Reviewer:	B
2nd reviewer:	V.

ETHOD:	GC/MS	VOA	(EPA	SW	846	Method	8260B
--------	-------	-----	------	----	-----	--------	-------

Y N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $\frac{(A_{\cdot})(I_{\cdot})(DF)}{(A_{\cdot})(RRF)(V_{\circ})(\%S)}$ A = Area of the characteristic ion (EICP) for the

compound to be measured

= Area of the characteristic ion (EICP) for the specific internal standard

Amount of internal standard added in nanograms (ng)

RRF = Relative response factor of the calibration standard.

Volume or weight of sample pruged in milliliters (ml) or grams (g).

Df = Dilution factor.

%S = Percent solids, applicable to soils and solid matrices

Example:

Sample I.D. #3 . QQQ

Conc. = (666437) (26) (5) 485530) (0.5)6) ())

330 ng/L

			Reported Concentration	Calculated Concentration	
#	Sample ID	Compound	<u> </u>		Qualification
-					
				·	
_					
	_				
			· · · · · · · · · · · · · · · · · · ·		
-					
-				· · · · · · · · · · · · · · · · · · ·	
	·				

Boeing Realty Corp. Bldg. C-6 Facility Data Validation Reports LDC# 16756

Dissolved Metals

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp. C-6 Facility

Collection Date:

November 21, 2006

LDC Report Date:

May 11, 2007

Matrix:

Water

Parameters:

Dissolved Manganese

Validation Level:

Tier 1, 2, & 3

Laboratory:

TestAmerica

Sample Delivery Group (SDG): IQC3058

Sample Identification

IRZB0081_WG032807_0001 CMW026_WG032807_0001* IRZB0095_WG032807_0001** IRZB0081_WG032807_0001MS IRZB0081_WG032807_0001MSD

^{*}Indicates sample underwent Tier 2 review **Indicates sample underwent Tier 3 review All other samples underwent Tier 1 review

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6010B for Dissolved Manganese.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent a Tier 3 review. A Tier 2 or Tier 1 review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Tier 2 or Tier 1 criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

Calibration data were not reviewed for Tier 1.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

ICP-MS was not utilized in this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

All sample result verifications were acceptable for samples on which a Tier 3 review was performed. Raw data were not evaluated for the samples reviewed by Tier 2 or Tier 1 criteria.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp. C-6 Facility
Dissolved Manganese - Data Qualification Summary - SDG IQC3058

No Sample Data Qualified in this SDG

Boeing Realty Corp. C-6 Facility
Dissolved Manganese - Laboratory Blank Data Qualification Summary - SDG IQC3058

No Sample Data Qualified in this SDG

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, 1rvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing 701 N. Parkcenter Drive

Attention: Mehmet Pehlivan

Santa Ana, CA 92705

Project ID: Boeing C-6 Torrance

EM2727

Report Number: IQC3058

Sampled: 03/28/07

Received: 03/28/07

DISSOLVED METALS

Analyte.	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQC3058-05 (IRZB0081_ Reporting Units: mg/l	WG032807_0001 - Wa	ater)							
Manganese	EPA 6010B-Diss	7C29129	0.0070	0.020	2.0	1	03/29/07	03/29/07	
Sample ID: IQC3058-06 (CMW026_V Reporting Units: mg/l	WG032807_0001 - Wa	ter)							
Manganese	EPA 6010B-Diss	7C29129	0.0070	0.020	1.9	1	03/29/07	03/29/07	
Sample ID: IQC3058-07 (IRZCMW00 Reporting Units: mg/l	93_ WG032807_0001 -	Water)							
Manganese	EPA 6010B-Diss	7C29129	0.0070	0.020	-0.30		-03/29/07	-03/29/07	
Sample ID: 1QC3058-08 (IRZB0095_V	WG032807_0001 - Wa	ter)							
Reporting Units: mg/l Manganese	EPA 6010B-Diss	7C29129	0.0070	0.020	1.9	1	03/29/07	03/29/07	
Sample ID: IQC3058-09 (IRZCMW00	94 _WG032807_0001 -	Water)							
Reporting Units: mg/l	EPA 6010B-Diss	-7C2912 9	0.0070	0.020	0.21	-1	-03/29/07	-03/29/0 7	

TestAmerica - Irvine, CA Nicholas Marz Project Manager

Nos1407

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQC3058 < Page 32 of 68>

	#: 16756A4 V #: IQC3058 ratory: Test America	QC3058 Tier 1/2/3									
MET	HOD: Dissolved Mn (EPA SV	V 846	Method	l 6010B)			2	nd Reviewer:			
The s valida	amples listed below were revaluntion findings worksheets.	viewe	d for ead	ch of the f	ollowing valid	dation areas. Vali	dation findings	are noted in attached			
	Validation Are	a				Co	mments				
I.	Technical holding times			A	Sampling date	es: 3/28/07					
H.	Calibration			A	Not reviewed	for Tier I validation.					
III.	Blanks			x							
IV.	ICP Interference Check Sample	(ICS)	Analysis	Ď							
V.	Matrix Spike Analysis			A							
VI.	Duplicate Sample Analysis			2							
VII.	Laboratory Control Samples (LC	S)		A	lus						
VIII.	Internal Standard (ICP-MS)					ettelizes					
IX.	Furnace Atomic Absorption QC),	0					
Χ.	ICP Serial Dilution			N	MT beforme!						
XI.	Sample Result Verification			A	Not reviewed for Tier I & II validation.						
XII.	Overall Assessment of Data			A							
XIII.	Field Duplicates			٢							
XIV.	Field Blanks			ν							
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet		ND = No R = Rins FB = Fie		s detected	D = Duplicate TB = Trip blank EB = Equipment	blank				
/alidat	ed Samples:* Indicates sample und	erwent	Tier Vali	idation, **Inc	dicates sample	underwent Tier III vali	dation				
1	IRZB0081_WG032807_0001	11			21		31				
2	CMW026_WG032807_0001 +	12			22		32				
3	IRZB0095_WG032807_0001**	13			23		33				
4	IRZB0081_WG032807_0001MS	14	:		24		34				
5	IRZB0081_WG032807_0001MSD	15			25		35				
6	PB	16			26		36				
7		17			27		37				
8		18			28		38				
9		19			29		39				
10		20			30		40				
Votes	:										

LDC #: 169 16 for SDG #: Cu cou

Page: __of ___ Reviewer: __Mu_ 2nd Reviewer: _____

Method: Metals (EPA SW 846 Method 6010/7000/6020)

Method:Metals (EPA SW 846 Method 6010/7000/6020)				
Validation Area	Yes	No	NA	Findings/Comments
i pachita kilologalinesti sasa sasa sasa taka 1411 ana asa sa t	2.4	in the		多的数 多数。。
All technical holding times were met.	<u> </u>			
Cooler temperature criteria was met.		1	100000	
In Calebration Control of the Contro				
Were all instruments calibrated daily, each set-up time?	1	<u> </u>		
Were the proper number of standards used?	1			
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury and 85-115% for cyanide) QC limits?	1			
Were all initial calibration correlation coefficients > 0.995? (Level IV only)				
in Blands	Ī			
Was a method blank associated with every sample in this SDG?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		1		
D/HOS filesterinos Check Sample and the property of the second of the se				
Were ICP interference check samples performed daily?				
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	/			
IX-Maint spikelMaint spike duplicates and the spike sp				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	^			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	>			
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.	/			
V-Laboratory control samples				
Was an LCS anaylzed for this SDG?	/			
Was an LCS analyzed per extraction batch?	1			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	/			
Vi Furnace Atomic Absorption QC				
If MSA was performed, was the correlation coefficients > 0.995?			4	
Do all applicable analysies have duplicate injections? (Level IV only)				
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)			1	
Were analytical spike recoveries within the 85-115% QC limits?			A	

VALIDATION FINDINGS CHECKLIST

Page:	γof γ
Reviewer:	IM
2nd Reviewer:	

	1	T	T	1
Validation Area	Yes	No	NA	Findings/Comments
VVI. ICE senal Olludon		29.5		
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the IDL?				
Were all percent differences (%Ds) < 10%?			1	
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.			1	
THE INTERNAL SECTION OF THE PROPERTY OF THE PR				
Were all the percent recoveries (%R) within the 30-120% of the intensity of the internal standard in the associated initial calibration?			/	
If the %Rs were outside the criteria, was a reanalysis performed?		and the second		
2. ul est cultur evalue assurance and (2. lain). Control 2 (2. lain) and a state of the state of				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?			_1	
A Sample Result Vogilication is the second street of the second street o				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
Xi Veralla seessi on ordinate and the seessi of the seessi				
Overall assessment of data was found to be acceptable.		l		·
XII Significates 25 3 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Field duplicate pairs were identified in this SDG.				·
Target analytes were detected in the field duplicates.			1	
XIL Field blanks :				
Field blanks were identified in this SDG.				
Target analytes were detected in the field blanks.			\mathcal{I}	

LDC #:	6756	Aug
SDG #:	روه	_core

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

Page:_	of/_
Reviewer:_	<u>`</u> m´
2nd Reviewer:	d
_	

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = <u>Found</u> x 100 True Where, Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution

True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
3W	ICP (Initial calibration)	hn.	1-927	2_	9,6	NR	4
	GFAA (Initial calibration)		<i>)</i>				
·	CVAA (Initial calibration)						
cul	ICP (Continuing calibration)	140	(~2-3	1	100	M	
·	GFAA (Continuing calibration)						
	CVAA (Continuing calibration)		-				
	Cyanide (Initial calibration)	<u> </u>					
:	Cyanide (Continuing calibation)						

Comments:	Refer to Calibration	<u>Verification findings worksheet for</u>	<u>or list of qualifications an</u>	<u>id associated samples whe</u>	en reported results do not a	agree within 10.0	1% of the
recalculated	results.						77

BOE-C6-0054852

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

Page:_	of
Reviewer:_	mn
2nd Reviewer:	

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalluculated using the following formula:

 $%R = Found \times 100$ True

Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = |S-D| \times 100$ (S+D)/2

Where, S = Original sample concentration

D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 $%D = ||-SDR|| \times 100$

TOTCLC.4SW

Where, 1 = Initial Sample Result (mg/L)

SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

			Found (2 ()		Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	%R/RPD/%D	%R / RPD / %D	Acceptable (Y/N)
Tuyan	ICP interferance check	bin	0.4985	0.5	150	Ne	Y
Les	Laboratory control sample		1029		103	103	
4	Matrix spike		(SSR-SR)	/	108	107	
415	Duplicate	V	3043	372	1	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Mo	ICP serial dilution						

Comments:	Hefer to ap	propriate wo	orksneet for	r list of qualifi	cations and	associated	samples w	<u>nen reportec</u>	<u>d results do</u>	not agree w	ithin 10.0% (of the recal	culated res	sults.
							~							

LDC # SDG #	:: <u>\(</u> #:	Cul com	VALIDATION FINDINGS WORKSHEET Sample Calculation Verification	Page:_ Reviewer:_ 2nd reviewer:_	Mrs.
METH	OD: Tra	ce Metals (EPA SW 846	Method 6010/7000)		•
Please Y N N N O N	N/A	Have results been rep	questions answered "N". Not applicable question orted and calculated correctly? calibrated range of the instruments and within the below the CRDL?		
Detect	ed analy	te results for		ere recalculated and verific	ad using the
	ng equa			- To Tooling and Tolling	-a asing the
Concent	ration =	(RD)(FV)(Dil) (In. Vol.)(%S)	Recalculation:		
RD FV In. Vol.	=======================================	Raw data concentration Final volume (ml) Initial volume (ml) or weight	(G) From the now Into		:

		Report Consont	rted tration	Calculated Concentration	Accepta
Sample ID	Analyte	(mg	1-)	(mg/2)	(Y/N)
3	Mn		9	1.9	У
	1 11				/
				,	

			· ·		

RECALC.4S2

Boeing Realty Corp. Bldg. C-6 Facility Data Validation Reports LDC# 16756

Wet Chemistry

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg C-6 Facility

Collection Date:

March 28, 2007

LDC Report Date:

May 11, 2007

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

Tier 1, 2, & 3

Laboratory:

TestAmerica

Sample Delivery Group (SDG): IQC3058

Sample Identification

IRZB0081_WG032807_0001 CMW026_WG032807_0001* IRZB0095_WG032807_0001**

^{*}Indicates sample underwent Tier 2 review **Indicates sample underwent Tier 3 review All other samples underwent Tier 1 review

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Chloride Nitrate, Nitrite, Sulfate, and Orthophosphate, EPA Method 310.1 for Alkalinity, EPA Method 350.3 for Ammonia as Nitrogen, EPA Method 376.2 for Sulfide, and EPA Method 415.1 for Total Organic Carbon.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a Tier 3 review. A Tier 2 or Tier 1 review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Tier 2 or Tier 1 criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration of each method were met.

Initial calibration data were not reviewed for Tier I.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

Calibration verification data were not reviewed for Tier I.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Ammonia as N	0.0783 mg/L	All samples in SDG IQC3058
ICB/CCB	Ammonia as N	0.1038 mg/L	CMW026_WG032807_0001* IRZB0095_WG032807_0001**

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
IRZB0095_WG032807_0001**	Ammonia as N	0.35 mg/L	0.35U mg/L

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a Tier 3 review was performed. Raw data were not evaluated for the samples reviewed by Tier 2 or Tier 1 criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg C-6 Facility Wet Chemistry - Data Qualification Summary - SDG IQC3058

No Sample Data Qualified in this SDG

Boeing Realty Corp., Bldg C-6 Facility Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG IQC3058

SDG	Sample	Analyte	Modified Final Concentration	A or P
IQC3058	IRZB0095_WG032807_0001**	Ammonia as N	0.35U mg/L	Α

Test America

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing 701 N. Parkcenter Drive

Attention: Mehmet Pehlivan

Santa Ana, CA 92705

Project ID: Boeing C-6 Torrance

EM2727

Report Number: IQC3058

Sampled: 03/28/07 Received: 03/28/07

INORGANICS

		`	V11011	11200					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor		Date Analyzed	Data Qualifiers
Sample ID: IQC3058-05 (IRZB0081_v	WG032807 0001 -	Water)							
Reporting Units: mg/l									
Alkalinity as CaCO3	EPA 310.1	7D05119	2.0	2.0	550	1	04/05/07	04/05/07	
Ammonia-N	EPA 350.3	7D09073	0.70	5.0	48	10	04/09/07	04/03/07	
Chloride	EPA 300.0	7C28043	5.0	25	350	50	03/28/07	04/09/07	
Nitrate-NO3	EPA 300.0	7C28043	0.25	0.50	ND	1	03/28/07	03/28/07	
Nitrite-NO2	EPA 300.0	7C28043	0.30	0.50	ND	1	03/28/07	03/28/07	
Orthophosphate - PO4	EPA 300.0	7C28043	0.40	0.50	ND	1	03/28/07	03/28/07	
Sulfate	EPA 300.0	7C28043	0.15	0.50	5.0	1	03/28/07	03/28/07	
Sulfide	EPA 376.2	7D04112	0.010	0.10	ND	1	03/28/07	03/28/07	
Total Organic Carbon	EPA 415.1	7D03155	2.5	5.0	26	5	04/03/07	04/04/07	
Sample ID: IOC2059 06 (CMW026 W	/C02200# 000+ **		_,,	5.0	20	,	04/03/01	04/03/07	
Sample ID: IQC3058-06 (CMW026_W Reporting Units: mg/l	'G03280'/_0001 - W	(ater)							
Alkalinity as CaCO3	EDA 210 1	77205110	2.0						
Ammonia-N	EPA 310.1	7D05119	2.0	2.0	360	1	04/05/07	04/05/07	
Chloride	EPA 350.3	7D09073	0.070	0.50	1.8	1	04/09/07	04/09/07	
Nitrate-NO3	EPA 300.0	7C28043	5.0	25	220	50	03/28/07	03/28/07	
Nitrite-NO2	EPA 300.0	7C28043	0.25	0.50	ND	1	03/28/07	03/28/07	
Orthophosphate - PO4	EPA 300.0	7C28043	0.30	0.50	ND	1	03/28/07	03/28/07	
Sulfate	EPA 300.0	7C28043	0.40	0.50	ND	1	03/28/07	03/28/07	
Sulfide	EPA 300.0	7C28043	0.15	0.50	24	1	03/28/07	03/28/07	
Total Organic Carbon	EPA 376.2	7D04112	0.010	0.10	0.092	1	04/04/07	04/04/07	J
•	EPA 415.1	7D03155	0.50	1.0	9.4	1	04/03/07	04/03/07	
Sample ID: IQC3058-07 (IRZCMW003	_WG032807_0001	-Water)							
Reporting Units: mg/l									
Alkalinity as CaCO3	EPA 310.1	7D05119	2.0	2.0	180	1 -	-04/05/07	04/05/07	
Ammonia-N	EPA 350.3	7D09073	0.070	0.50	0.24	$\overline{1}$	04/09/07	04/09/07	B, J
Chloride	EPA 300.0	7C28043	5.0	25	110	50	03/28/07	03/28/07	Б, 3
Nitrate-NO3	EPA 300.0	7C28043	_0.25	0.50	7.0	1	03/28/07	03/28/07	
Nitrite-NO2	EPA 300.0	7028043	0.30	0.50	ND	1	03/28/07	03/28/07	
Orthophosphate - PO4	EPA-300.0	7C28043	0.40	0.50	ND	1	03/28/07	03/28/07	
Sulfate	EPA 300.0	7C28043	7.5	25	100	50	03/28/07	03/28/07	
Sulfide	EPA 376.2	7D04112	0.010	0.10	0.011		04/04/07	04/04/07	J
Total Organic Carbon	EPA 415.1	7D04147	0.50	1.0	_0.66			-04/04/07	J
-								O TOTOTO	J

TestAmerica - Irvine, CA Nicholas Marz

Project Manager

Pos1407

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQC3058 <Page 33 of 68>

Test/America

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

701 N. Parkcenter Drive Santa Ana, CA 92705 Project ID: Boeing C-6 Torrance

EM2727

Report Number: IQC3058

Sampled: 03/28/07

Received: 03/28/07

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQC3058-08 (IRZB0095_W	G032807_0001 - V	Vater)							
Reporting Units: mg/l									
Alkalinity as CaCO3	EPA 310.1	7D05119	2.0	2.0	630	1	04/05/07	04/05/07	
Ammonia-N	EPA 350.3	7D09073	0.070	0.50	0.35	U 1	04/09/07	04/09/07	B, J
Chloride	EPA 300.0	7C28043	5.0	25	300	50	03/28/07	03/28/07	2,0
Nitrate-NO3	EPA 300.0	7C28043	0.25	0.50	0.51	1	03/28/07	03/28/07	
Nitrite-NO2	EPA 300.0	7C28043	0.30	0.50	ND	1	03/28/07	03/28/07	
Orthophosphate - PO4	EPA 300.0	7C28043	0.40	0.50	ND	1	03/28/07	03/28/07	
Sulfate	EPA 300.0	7C28043	0.15	0.50	21	1	03/28/07	03/28/07	
Sulfide	EPA 376.2	7D04112	0.20	2.0	2.3	20	04/04/07	04/04/07	
Total Organic Carbon	EPA 415.1	7D04147	0.50	1.0	10	1	04/04/07	04/04/07	
Sample ID: IQC3058-09 (IRZCMW004-	WG032807 0001	-Water)							
Reporting Units: mg/l	_	,							
Alkalinity as CaCO3	EPA 310.1	7D05119	2.0	2.0	350	<u></u>	04/05/07	04/05/07	
Ammonia-N	EPA 350.3	7D09073	0.070	0.50	0.12	1	04/09/07	04/09/07	В, Ј
Chloride	EPA 300.0	7C28043	5.0	25	380	50	03/28/07	03/29/07	Б, 3
Nitrate-NO3	EPA 300.0	7C28043	-0.25	0.50	15	1	03/28/07	03/29/07	
Nitrite-NO2	EPA 300.0	7C28043	0.30	0.50	ND	1	03/28/07	03/29/07	
Orthophosphate - PO4	EPA 300.0	7C28043	0.40	0.50	ND	1	03/28/07	03/29/07	
Sulfate	EPA 300.0	7C28043	0.15	0.50	32	1	03/28/07	03/29/07	
Sulfide	EPA 376.2	7D04112	0.010	0.10	0.051	1	04/04/07	04/04/07	ĭ
Total Organic Carbon	EPA 415.1	7 D04147	-0.50	1.0	0.67		04/04/07	-0 4/04/0 7	j

TestAmerica - Irvine, CANicholas Marz
Project Manager

Max 1407

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQC3058 <Page 34 of 68>

	#: IQC3058 atory: Test America			7	Γier 1/2/3		S WORKSHEET	Date: Sul- Page: of Reviewer: Sul- 2nd Reviewer: M		
The s								e (EPA Method 376.2), TOC SOJ Alkaling (Chand) (Chand) (Chand)		
	Validation A	rea			I		Comment			
·. I.	Technical holding times			A	Sampling d	ates	11.8Ln			
lla.	Initial calibration			Á			or Tier I validation.			
llb.	Calibration verification			A			or Tier I validation.			
111.	Blanks			5w						
IVa.	Matrix Spike/(Matrix Spike) Du	plicates		A	hy!	140	st bup.	and the second s		
IVb.	Laboratory control samples			A	us	•				
V.	Sample result verification				Not reviewed for Tier I & II validation.					
VI.	Overall assessment of data			A						
VII.	Field duplicates			· 1~			and the second of	and the second s		
VIII	Field blanks			μ						
Note: Validat	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:* Indicates sample ur	nderwen	R = Rins FB = Fie	eld blank		ole i	D = Duplicate TB = Trip blank EB = Equipment blank underwent Tier III validation			
	b u	<u> </u>		,		T				
1	IRZB0081_WG032807_0001	11			21	\dashv		31		
2	CMW026_WG032807_0001 **	12			22	-		32		
3	IRZB0095_WG032807_0001**	13			23	4		33		
4	Mrz	14			24	_		34		
5		15			25			35		
6		16			26			36		
7		17			27	_	3	37		
8		18			28	-		38		
9		19			29	4		39		
10		20			30			10		

LDC #:	GUSDAL
SDG #:	yel com

VALIDATION FINDINGS CHECKLIST

Page: 1	of_	
Reviewer:	НЧ	
2nd Reviewer:		_

Method:Inorganics (EPA Method)		т	7	T
Validation Area	Yes	No	NA	Findings/Comments
Careonica Chieffing times as a 12 miles of				
All technical holding times were met.	1	<u></u>		
Coolor temperature criteria was met.	1/	<u> </u>		
Decision to the second				
Were all instruments calibrated daily, each set-up time?				
Were the proper number of standards used?				
Were all initial calibration correlation coefficients > 0.995?	1			
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?				
Were titrant checks performed as required? (Level IV only)	<u> </u>			
Were balance checks performed as required? (Level IV only)				
I Belanco Maria de la companya de l				
Was a method blank associated with every sample in this SDG?	1			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	/			
ty Mates spike Matrix spike thin licates and chiplicates each at the same and spike the s				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/			horelant
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.		/		J
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL.	/			
V. ealocationy control samples view				
Was an LCS anaylzed for this SDG?				
Was an LCS analyzed per sylvantian hatch?	1			
Was an LCS analyzed per extraction batch?	٠ ١			
Was an ECS analyzed per extraction batch? Were the LCS percent recoverles (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?	Δ			
Were the LCS percent recoveries (%R) and relative percent difference (RPD)	Δ	* 1612 * 1612		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?	<u> </u>	71.5		3 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

LDC#:	6	156A	6	_
SDG #:	C	,el	core-	

VALIDATION FINDINGS CHECKLIST

Page:_	l of l
Reviewer:	my
2nd Reviewer:	<u>d</u>

	l -	T	T	T
Validation Area	Yes	No	NA	Findings/Comments
VII. Sampe nesuli Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	1			
Were detection limits < RL?	7			
30 Openies especification de la company				College College College
Overall assessment of data was found to be acceptable.	/			
Kerelaginalis Talah Talah Akara Akara (1881)				
Field duplicate pairs were identified in this SDG.		レ	-	
Target analytes were detected in the field duplicates.			/	
XSpekkolanks et mer et en 1915 in 1915				
Field blanks were identified in this SDG.		\		
Target analytes were detected in the field blanks.				

LDC #:_	16756	A6
SDG #:	Sil	we

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page:_	of	
Reviewer:_	MY	
2nd reviewer:_	1	
	70-	

All circled methods are applicable to each sample.

Sample ID	Parameter
1-3	pH TDS (C) F(NO), NO) SO (PO) (ALK) CN (NH) TKN TOO CR" (S)
	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR"+
	ph tds ci f No, No, So, Po, Alk Cn' Nh, Tkn toc Cr"+
	ph TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	ph TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR6+
	ph tds cif no3 no2 so4 po4 alk cn nh3 tkn toc cr4+
	PH TDS CIF NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR®+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CNT NH3 TKN TOC CR8+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	ph TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁸⁺
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+
	pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+
	pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁸⁺
	pH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR6+

Comments:	<u></u>

METHODS.6

LDC #:	16756A6
SDG #:	see we

VALIDATION FINDINGS WORKSHEET Blanks

	Page:_	of
	Reviewer:_	My/
2nd	Reviewer:	

METHOD: Inorganics,	Method	Sec	corar

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Were all samples associated with a given method blank?

N N/A Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Conc. units	: mg			Ass	oclated San	nples:	132 All,	Tell/	upzz,	3	
Analyte	Blank ID	Maximum	Blank				Sa	mple Identificat	ion		
	MB	ICB/CCB	Action Limit	3							
WH3-N	0,0783	0.1038	0.3915/0.5K	0,35							
		, µ									
							<u> </u>				
								•			
								-			

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

BLANKS,6

LDC #:	6756	AL ,
SDG #:	Je	cover

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

Page:	_of
Reviewer:	My
2nd Reviewer:_	

METHOD: Inorganics, Metho	d Sel cover			, ,
The correlation coefficient (r)	for the calibration of	S	was recalculated. Calibration date:	4/4/57
An initial or continuing calibra	tion verification percent re	ecovery (%	KR) was recalculated for each type of anal	
%R = <u>Found</u> x 100 Where True	, Found = concentration of eac True = concentration of eac		neasured in the analysis of the ICV or CCV solution the ICV or CCV source	

			ا مادا م		Recalculated	Reported	
Type of Analysis	Analyte		www. (units)	(units)	r or %R	r or %R	Acceptable (Y/N)
initial calibration		Blank	0	0			
Calibration verification		Standard 1	0,108	0.055			
		Standard 2	0.324	0.145			
		Standard 3	0.54	0,55/			V
	5	Standard 4	14.8	0,497	vzo.919t8	v 20,96955	
		Standard 5					
		Standard 6					
		Standard 7					
Calibration verification	Sof	7 0	20.14		15 Y	w	Y
Calibration verification	My	4	3.788		95		
Calibration verification	1.0	lo	9.90\$		91	1	У

Comments:	Refer to Calibration	Verification findings	worksheet for list o	of qualifications	and associated	samples when	reported resu	ılts do not ag	ree within	10.0%
	ulated results					· · · · · · · · · · · · · · · · · · ·				

BOE-C6-0054868

LDC #: 16756 AC SDG #: sel con

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page: ____of__ Reviewer: _______ 2nd Reviewer: ______

METHOD: Inorganics, Method Sel Cove

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 $%R = Found \times 100$ Where, True

Found =

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True =

concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = \underline{|S-D|} \times 100$ Where,

S =

Original sample concentration

(S+D)/2

D =

Duplicate sample concentration

Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	Recalculated %R / RPD	Reported %R / RPD	Acceptable (Y/N)
tiz	Laboratory control sample	po4	5,76	\$10	los	15	4
300 × 195	Matrix spike sample	Tol	(SSR-SR)	5.0 9.5	110	140)
10CX48	Duplicate sample	61x	(192	(80	D	೧	

	Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated
results	

TOTCLC.6

BOE-C6-0054869

	LDC #: 4756 ALIDATION FINDINGS WORKSHEET SDG #: 5 Sample Calculation Verification METHOD: Inorganics, Method VALIDATION FINDINGS WORKSHEET Sample Calculation Verification Reviewer: 41 2nd reviewer: 41									
N N Compo	Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A									
	Concentration = Recalculation: Toc= 3.40 - 96,918 Toc= 3.12,24 210,214									
_	(00=	1/2,14	31	2, 24	0	72				
#	Sample ID	Analyte	Reported Concentration (Ny)	Calculated Concentration () w)	Acceptable (Y/N)					
	3	Alk	630	630	4					
		6195-W	0.35	0.37						
		MAZ	320	35°D						
			0.5)	05						
-		50 <u>1</u>	2/	γ						
		<u> </u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3,'3						
		Tol	10	<u>(Ď</u>	1 1					

 outilpio ib	• •• •• • • • • • • • • • • • • • • • •	100	9.410	
3	Alk	630	630	4
	M-N Ce Mz	0.35	0.37	
	· · · · ·	350	3 5°0	
	Moz	051	0,5)	
	501	21'	>	
	\ \$'	21/3	2, 3	,
	Tol	1.0	16	1

Note:

Boeing Realty Corp. Bldg. C-6 Facility Data Validation Reports LDC# 16756

Dissolved Gases

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg C-6 Facility

Collection Date:

March 28, 2007

LDC Report Date:

May 15, 2007

Matrix:

Water

Parameters:

Dissolved Gases

Validation Level:

Tler 1, 2, & 3

Laboratory:

TestAmerica, Inc./Air Technology Laboratory, Inc.

Sample Delivery Group (SDG): IQC3058/A7033001

Sample Identification

IRZB0081_WG032807_0001 CMW026_WG032807_0001* IRZB0095_WG032807_0001**

^{*}Indicates sample underwent Tier 2 review

^{**}Indicates sample underwent Tier 3 review

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per Method RSK-175 for Dissolved Gases.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a Tier 3 review. Samples indicated by a single asterisk on the front cover underwent a Tier 2 review. Raw data were not evaluated for the samples reviewed by Tier 1 or 2 criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

Initial calibration data were not reviewed for Tier 1

b. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 25.0% QC limits.

Calibration verification data were not reviewed for Tier 1.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No dissolved gas contaminants were found in the method blanks.

IV. Accuracy and Precision Data

a. Surrogate Recovery

Not required by the method.

b. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Target Compound Identification

All target compound identifications were within validation criteria on which a Tier 3 review was performed. Raw data were not evaluated for the samples reviewed by Tier 1 or 2 criteria.

VI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria on which a Tier 3 review was performed. Raw data were not evaluated for the samples reviewed by Tier 1 or 2 criteria.

VII. System Performance

The system performance was acceptable for samples on which a Tier 3 review was performed. Raw data were not evaluated for the samples reviewed by Tier 1 or 2 criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg C-6 Facility
Dissolved Gases - Data Qualification Summary - SDG IQC3058/A7033001

No Sample Data Qualified in this SDG

Boeing Realty Corp., Bldg C-6 Facility Dissolved Gases - Laboratory Blank Data Qualification Summary - SDG IQC3058/A7033001

No Sample Data Qualified in this SDG

TestAmerica Client: Nicholas Marz Attn:

Client's Project:

IQC3058 3/30/2007

Date Received: Matrix: Water Units: ug/L

Dissolved Gases by EPA Procedure RSKSOP-175 0

		IRZP	800	CMW	かえん			RZ.	0095-	NGO	25807.	
Lab No.:		A703	33001-01	A7033001-02		A703	A7033001-03		A7033001-04		A-7033001-05	
Client Sam	Client Sample 1.D.:		3058-05	IQC	3058-06	IQC	3058-07	IQC	3058-08	1QC	3058-99	
Date S	ampled:	3/28/2007		3/2	3/28/2007		3/28/2007		3/28/2007		3/28/2067	
Date A	nalyzed:	4/2	2/2007	4/2	2/2007	4/2	4/2/2007		4/2/2007		2/29/07	
Analyst	Initials:		DT	DT			D7		DT		D/Γ	
Data File:		02	apr017	02apr018 1 070402GC8A1		·		02apr020 070402GC8A1		02 pr021 070402GC8A1		
Q	QC Batch:		02GC8A1									
Dilution	Factor:		1.0		1.0	/1.0		1.0		1.0		
ANALYTE	PQL	RL	Results	RL	Results	RL/	Results	RL	Results	R/	Results	
Methane	1.0	1.0	6,800	1.0	13,000	1.0	3,200	1.0	17,000	1/0	1,600	
Ethane	2.0	2.0	ND	2.0	ND	2.0	ND	2.0	ND	7.0	ND	
Ethylene	3.0	3.0	8.7	3.0	ND	3/0	5.0	3.0	38	3.0	ND	
Carbon Dioxide	200	200	200,000	200	95,000	200	12,000	200	130,000	200	68,000	
Nitrogen	1,500	1,500	86,000	1,500	79,000	1,500	99,000	1,500	89,000	1,500	100,000	

PQL = Practical Quantitation Limit

ND = Not Detected (Below RL)

RL = PQL X Dilution Factor

Reviewed/Approved By:	MAU. I	
-	Mary J. Johnson	_
	Operations Manager	

Date: 4/6/07

Page 2 of 3

A7033001

The cover letter is an integral part of this analytical report.

Maryon

AirTECHNOLOGY Laboratories, Inc. -

SDG # Labora METH The sa	#:16756A51 #:IQC3058/A7033001 atory:_ Del Mar Analytical// ###################################	Air Te	echnology Lethod RSK-	T <u>aboratory</u> 175)	Fier 1/2/3 , Inc.			Date: 5/12/0 Page: _/of _/ Reviewer: 2nd Reviewer:	
	Validation	Area				C	omments		
1.	Technical holding times			Δ.	Sampling of	. د د د	1		
IIa.	Initial calibration			Δ		ved for Tier I validation.	,		
IIb.	Calibration verification			Δ		ved for Tier I validation.	cer = >	_	
111.	Blanks			A			<u> </u>		
IVa.	Surrogate recovery			A	ton	Reouver			
IVb.	Matrix spike/Matrix spike dup	licates		7	alien	t specified)		
IVc.	Laboratory control samples			A	Les	. 1 1			
V.	Target compound identification								
VI.	Compound Quantitation and CRQLs Not reviewed for Tier I & II validation.								
VII.	System Performance			A	Not reviev	ved for Tier I & II validat	ion.		
VIII.	Overall assessment of data			A					
IX.	Field duplicates			N					
X.	Field blanks			N					
Note: √alidate	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples: * Indicates sample	under	R = Rin FB = Fid	eld blank		D = Duplicate TB = Trip blank EB = Equipmer	nt blank		
1	IRZB0081_WG032807_0001*	11	MB-1	1/2/07	21		31		
	CMW026_WG032807_0001	12		- (-)	22		32		
	IRZB0095_WG032807_0001**	13			23		33		
4		14			24		34		
5		15			25		35		
6		16			26		36		
7		17			27		37		
8		18			28		38		
9		19			29		39		
10		20			30		40		
Notes:					•				

VALIDATION FINDINGS CHECKLIST

LDC#: 16756 AS | SDG#: pu comer Page: /of / Reviewer: / 2nd Reviewer:

Method: GC HPLC				
Validation Area	Yes	No	NA	Findings/Comments
Rgi ExmiscHikiSidhSidusies 2000				
All technical holding times were met.	4			
Cooler temperature criteria was met.		and the second	ONUS 1005	
The Committee Co				
Did the laboratory perform a 5 point calibration prior to sample analysis?	4			
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) < 20%?	X	V		
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?	V			
Did the initial calibration meet the curve fit acceptance criteria?				
Were the RT windows properly established?			*On the	
IX Continuing calibration				
What type of continuing calibration calculation was performed?%D or %R				
Was a continuing calibration analyzed daily?	_			
Were all percent differences (%D) ≤15%.0 or percent recoveries 85-115%?		-		
Were all the retention times within the acceptance windows?				
VERIANS THE REPORT OF THE PROPERTY OF THE PROP				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		V-100-		
A) Suxogale spikes				
Were all surrogate %R within the QC limits?				
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?			/	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?		drugent le 2000		
Wil:Malife spike/Malukspike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?	ļ		/	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIIII*Eaboratory control samples		T T		
Was an LCS analyzed for this SDG?	1	<u> </u>		
Was an LCS analyzed per extraction batch?		<u> </u>	<u> </u>	<u> </u>

LDC#: 16786AS | SDG#: per coner

VALIDATION FINDINGS CHECKLIST

Page:__/of_/ Reviewer:__/= 7 2nd Reviewer:__/

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		-		
DX Resijonal (Qualific ASSel ance and Quality (Control				
Were performance evaluation (PE) samples performed?	<u> '</u>			
Were the performance evaluation (PE) samples within the acceptance limits?				
Scalargia congonidudanii (canone pices)				
Were the retention times of reported detects within the RT windows?				
XI eam seartiquantiation (SRQLs)				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
(i) System pendimance				
System performance was found to be acceptable.				
XIIIkēverājassessmeni alkalaja, kuri kara kara kara kara kara kara kara ka				
Overall assessment of data was found to be acceptable.				
XIVA(Elejajája) (enjeste)				
Were field duplicate pairs identified in this SDG?				
Were target compounds idetected in the field duplicates?				
xv Fieldiblanks				
Were field blanks identified in this SDG?			-	
Were target compounds detected in the field blanks?				

LDC # 16756 A5 / SDG# pu comes

VALIDATION FINDINGS WORKSHEET <u>Initial Calibration Calculation Verification</u>

Me than

METHOD:

GC Carbon Dioxide (Method RSK-175)

Parameter:

Methane

Order of regression:

1

Data	Catura /Data star	0		X	Y
Date	Column/Detector	Compound		Mass (ppmV)	Area
05/24/2007	TCD	methane	*		
				1000	1955
	Front		*	5000	10247
				10000	21952
			-	100000	235627
				500000	1325566.0

Regress	ion Output:		Reported		
Constant	0.0	Constant	0.0		
Std Err of Y Est	14704.732				
R Squared	0.99934	R Squared	0.9953		
No. of Observations	5.000	• · · · · · · · · · · · · · · · · · · ·			
Degrees of Freedom	4.000	Ï			
X Coefficient(s)	2.63956E+000	X Coefficient(s)	2.63900E+000		
Std Err of Coef.	0.03	l 'i	,		

LDC # 16756 A5/ SDG# pul com

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:of_	
Reviewer:	5
2nd Reviewer:	

Methane

METHOD:

GC Carbon Dioxide (Method RSK-175)

Parameter:

Methane

Order of regression:

1

	1		X	Y
Date	Column/Detector	Compound	Mass	Area
	<u> </u>		(ppmV)	
05/23/2007	middle	methane	10	9309
			100	89744
			1000	863867
			5000	4401745
			10000	9597354
			3	5935.0

Regress	ion Output:		Reported
Constant	0.0	Constant	0.0
Std Err of Y Est	162740.545		•
R Squared	0.99823	R Squared	0.99848
No. of Observations	6.000		
Degrees of Freedom	5.000		
X Coefficient(s)	9.43220E+002	X Coefficient(s)	9.4322E+002
Std Err of Coef.	14.50	, ,	•

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:	of	_
Reviewer:_	77.	
2nd Reviewer:_	1,80	

*	/		
METHOD: G	C	HPLC	

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF ·CF = A/C

Where: ave. CF = initial calibration average CF
CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

#_	Standard ID	Calibration Date	Compo	ound .	Average CF(Ical)/ CCV Conc.	Reported CF/Conc. CCV	Recalculated CF/Conc. CCV	Reported %D	Recalculated %D
1	9:49	4/202/07	Methane	(TCD)	10000.00	10551.837	10551.837	5.5	5.5
2	CW 4:52 PM	4/2/07	V	(700)	10000	1190.082	7790.08	22.1	22,
3									
4									·

Comments: .	Refer to Continuing	Calibration	findings worksheet for	list of qualifi	ications and	l associated	samples when	reported r	esults do not	agree within	10.0% of the
recalculated	results.									<u> </u>	
											¥
											· · · · · · · · · · · · · · · · · · ·

LDC #:_	167	56A5
		eour

VALIDATION FINDINGS WORKSHEET

	• • • • • • • • • • • • • • • • • • • •	
aboratory Control Sample/Laborator	ry Control Sample Duplicates Results Ve	erification

Page:_	<u>/</u> of_/	
Reviewer:	17	
2nd R	eviewerz	_

____METHOD: __G

<u> (</u>	C	HPLO	3
-			_

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked sample concentration

SC = Sample concentration

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

SA = Spike added LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples: LCS/D

		Spi Add	ike led	Sample Conc.	Spike S	Sample	L	CS	LCS	SD	LCS/I	.CSD
Compound				(ug)	onc. Concentration		Percent Recovery		Percent Recovery		RPD	
		LCS	LCSD	<u>.</u>	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline	(8015)										·	
Diesel	(8015)											
Benzene	(8021B)											
Methane	(RSK-175)	1000	1000	0	7484.3	6375.8	108	107	92	92	ما١	16
2,4-D	(8151)			-								· · · · · · · · · · · · · · · · · · ·
Dinoseb	(8151)											
Naphthalene	(8310)											
Anthracene	(8310)								·			
НМХ	(8330)											
2,4,6-Trinitrot	oluene (8330)											

Comments: Refer to Laboratory Control Sample/Labor	atory Control Sample Duplicate	e findings worksheet for list o	of qualifications and associat	ed samples when reported
results do not agree within 10.0% of the recalculated re	sults.			
	· · · · · · · · · · · · · · · · · · ·			

LDC #:_	1075	16 AS 1
SDG #:_	pu	coner
•	/	

VALIDATION FINDINGS WORKSHEET <u>Sample Calculation Verification</u>

of
77
Á

METHOD: ___GC __ HPLC

Y N N/A Y/N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10% of the reported results?

Concentration= (A)(Fv)(Df) Example:

(RF)(Vs or Ws)(%S/100)

A= Area or height of the compound to be measured
Fv= Final Volume of extract
Df= Dilution Factor

RF= Average response factor of the compound

Example:

Sample ID. #3 Compound Name Me Hane

Concentration =

In the initial calibration

Vs= Initial volume of the sample

Ws= Initial weight of the sample

%S= Percent Solid

y = 2.6396 (x)
466538
176748.359 = 2.6396(x)

(X = 176745.	0.176746	ppmV
#	Sample ID	Compound	Reported Concentrations ()	Recalculated Results Concentrations ()	Qualifications
	mall in gas =	0.176746 (55.51) (16.0	04) (1000) = 3.	¥ 1	
	0, 0	41300			
ļ					
ļ	in liquid	1 = (0-176746) (16.04)	4)(1000) _ 12-8	8	
ļ	V	(22.4)(36)(2	98/273)		
<u> </u>				,	·
			Total = 16.69	mg/L - 17600	
L					

Comments:	